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Abstract—Consideration is given to the nonlinear problem on a shape of boundary between two viscous
liquids, of which one displaces the other one from a solid surface, the Reynolds number being rather low.
An asymptotic theory of wetting dynamics is developed that is of the second order with respect to small
capillary numbers and valid for any ratio of viscosity coefficients of the media. A formula describing the
dynamic contact angle (i.e. the inclination angle of the tangent to the interface) as a function of a distance
to the solid is derived. Limitations on the angles for which the second-order theory is valid are shown.
If the phase 2 viscosity is zero, the asymptotic second-order theory is valid for angles below 128.7°. A
theory applicability domain depends on the ratio of viscosity coefficients. The applicability domain is not
limited if the viscosity coefficients differ by a factor of less than four. Copyright © 1996 Elsevier Science
Ltd.
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1. INTRODUCTION

Two-phase boundary dynamics near a contact line is generally described by a notably nonlinear
hydrodynamics problem since the boundary shape must be determined simultaneously with velocity
fields for the phases.

Wetting hydrodynamics was considered in theoretical articles by Huh & Scriven (1971), Voinov
(1976, 1977, 1978, 1988, 1995), Dussan (1979), Pismen & Nir (1982), Hervet & de Gennes (1984),
de Gennes (1985), Cox (1986), Baiocchi & Pukhnachev (1990), Boender et al. (1991) and others.

Assuming small capillary number the boundary shape is described by an asymptotic relation for
the dynamic boundary angle (that is, the inclination angle of a tangent to the interface) that varies
slowly with distance to the solid (Voinov 1976). In (Voinov 1978) a relation with the second order
of accuracy with respect to the capillary constant has been proposed for the case of a “liquid—gas”
interface. A method for evaluating the constant in the boundary inclination angle asymptotic
equation of the second order was demonstrated in (Voinov 1995).

Deriving a second-order asymptotic theory for the general case when viscosity coefficients of
both liquids are not zero is obviously of interest. Within the second-order asymptotic theory the
contribution of microprocesses near the contact line to the dynamic boundary angle may, in
particular, be established at higher accuracy than the first-order theory provides.

Consider a creeping flow of two liquids over a flat solid surface. The boundary surface S,
between the liquids contacts the solid over a wetting line that moves at a velocity v along the normal
to the wetting line (figure 1). A steady-state interface S); near the three-phase contact line is
described by a two-dimensional problem for Stokes equations:

~Vp+ puAu=0, diva=0
U= —v, u2=03 x2=0;
(un); =0, () =), xeS5p;

(pf)l = (Pr)z, D = PicBx — Dalliy xeSh.
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Figure 1. Interface motion schematic, notation.

du; 0
P = —pou + H[a—% + 5%] s Pn = Pl

d
(pn)l - (pn): =40 = ___CEOES_(X g, XESlz. [l]

Here, the subscript 1 or 2 at brackets denotes values for a medium 1 or 2, respectively; the
repeating indices (i, k = 1, 2) are summation indices; x, and x, are Cartesian co-ordinates; »; is a
component of the normal; ¢ is the surface tension coefficient; g is the interface curvature; « is the
inclination angle of a tangent to the interface; 4 is the distance from an interface point to the solid.
The dynamic viscosity coefficient u takes a value y; for a jth liquid (f = 1, 2). According to [1], the
solid surface (x, = 0) and the interface S, are domains to impose kinematic boundary conditions,
the tangential stress p, is continuous across S;., and the normal stress p, undergoes a jump
depending on capillary forces.

Assume that Ca; = yv/o (j =1, 2) is low (Ca,—0). Below, we use Ca = pv/o and assume that
a viscosity ratio p, = p/u is finite. If u, = oo, the notation may easily be changed.

The distance h between the moving interface and the solid dictates a local characteristic
value of liquid velocity variation along the x, axis. A minimum distance 4, between the
interface and the solid must be much greater than a molecule size a for us to deal with the
problem.

Symbolize with 4, a characteristic maximum distance from the boundary S, to the solid.

Let each interface point {x, = A} be related to a semicircle that is normal both to the interface
at that point and the solid surface. An arc L,(h) of such circle is assumed to be in the phase 1,
and L,(h), in the phase 2. The flow area under consideration corresponds to h within the interval
(hw, ho), and, in these terms, an arc L; appears in positions from a minor arc L;(h,) to a major arc
Li(hy) (j =1, 2). At limiting arcs L;(h,) and L;(ho) the liquid velocity ¥ components do not exceed
the wetting velocity v, as to their order of magnitude.

It should also be assumed that the characteristic maximum (k,) and minimum (A,,) values of the
distance 4 from a point of the interface to the solid differ very much: In(ho/h.)> 1.

Of interest to us is a solution at a considerable distance from major arcs L;(H,)—specifically,
over a domain {A#<«#he}. The velocity field far from a major semicircle does not depend on the
velocities that could be specified for the semicircle (for a particular boundary shape). Similarly,
a velocity u over minor arcs L;(h,) (over a minor semicircle) do not asymptotically affect the
velocity field at a distance from these arcs {#>h,}, given an interface S, shape. This can be
explained via the Saint—Venant principle for Stokes equations. When employing the Saint-Venant
principle it suffices to take into account that the absolute value of the velocity u is on the order
of magnitude of the wetting velocity v, so detail of the velocity field over the limiting arcs is of
no importance.



TWO-PHASE BOUNDARY DYNAMICS 1157

The inequality In(/4/h.)>>1 enables adopting the following asymptotic boundary condition
for the interface curvature ¢ as a function of the distance to the solid, see (Voinov 1976,
1978):

dcosa h

=00. [2]

This is necessary for determining the dynamic boundary angle relation. Assume that [2] is valid
for {h <« ho}. Asymptotic descriptions of the dynamic boundary angle usually show a slow variation
of the angle « with the distance.

The problem is to establish dependence of the liquid interface inclination angle on the distance
A in the second approximation with respect to a small capillary number Ca over an intermediate
domain {h,, <h<hy}.

The asymptotic solution defines the boundary inclination angle (%) correct to a constant whose
determination requires an extra condition to be posed. One knows that the first-order theory admits
an angle at the minimum distance as the extra condition: a = &, /& = hp.

2. ASYMPTIOTIC SOLUTION TO THE INTERFACE DYNAMICS PROBLEM

2.1. Successive approximations

In the main approximation, see (Voinov 1976, 1978), the interface is locally close to its tangent
at h = h,. The tangent inclination angle B is equal to o at 4 = A, and a difference between these
angles is only of importance in two limiting cases: h=>00 and h=-0, if Ca is rather low.

The stream function  will be sought using the {r, 8} polar co-ordinate system whose center is
at the point where the tangent (from 4 = h,) intersects the solid. For each medium the function
i/ is sought in successive steps, by writing

A [3

where Y ~ vriCa*~', k = 1,2, ... For obtaining y;", the interface (to be determined) is defined
by the equation @ = «, and the theory for y* utilizes the small difference 8 — « (8 — a # 0) derived
from the first-order solution. The condition [1] for normal stresses should be satisfied by using
successive approximations, and the condition at every approximation is a basis for the interface
equation.

At the first approximation the normal stress p, at # = A, is obtained from the problem on flow
with a rectilinear interface (Voinov 1976, 1978). The stream function ¢ (hereafter the index (1) is
allowed to be omitted) in each of the two liquids satisfies the biharmonic equation

V=0, O0<r<oo, O<O<m, B#a; Y=y, O<a, Y=y 0>a [4]

Here, @ = a is the interface over which the following conditions hold:

_ =0 W _ 0 1 3% 1 oy 1%, 10 (13
O=o di=v:=0 Z5="5" [2692 ar<r 6r>] “Z[rzaez r6r<r arzﬂ'[s]

Similarly, over the solid surface:
(1 (
§=0, Y=o, %%'—=v; 0=n Y=o, %—'”2-=-v. (6]

Velocity components

oy 1 oyt
n_ m 20V
Uoo= —"5 W =7750

should naturally be limited. One could demonstrate that this requirement is sufficient for the
solution {" to be unique over the domain [4].
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By analogy with Taylor (1960), Moffatt (1964), Huh & Scriven (1971), Voinov (1976, 1988) the
solutions of the biharmonic equation that satisfy [5] and [6] may be written as follows:

" = r[c,0 sin @ + d,(6 cos 6 — sin 8)+v sin 0],

Y = rlc:0; sin 6: + dy(6: cos 6, — sin 0,)+v sin 6], 6, =7 — 6,

it

a = vsin’ af(u — p)(sin® @ — @) —wnelA™, ¢ =7n—a,
o =vsinfaf(pu — p)(@® — sin* a)— nra]A,

dy = —vsin af(u, — p){@? — sin? p)cos a + wn(sin ¢ — @ cos @)JA,
dr = —v sin af(p — ) (2® — sin’ a)cos @ + mr(sin o — o cos x)]A !,
A = (o — sin a cos a)(@? — sin® @) + ¢ — sin @ cos @)(a* — sin® ). (7N

Stresses at & = h, are derived with due account of the condition {ps => 0 for r = co over the
line 6 = «} that is a consequence from [2]. With this in mind, it should be concluded that p = 0
when r = oo. In this case we have pressures in both media:

pr === = (c1sin 0 + dy cos 0), p' = —2—f3 (c2sin 62 + > cos 62). (8]

Making use of the expression

010
Do = —p~2ub—r7a~dr/,

we find the stress jump at 4 = Ay

(P — (P =T ¢, €= Ca2Q(a), Ca=-“(;—l,

Q= ((ulw + po) —sin’ a(p — o)), @ =mn—a. [9]

From the condition [1] for normal stresses and from [9], one can derive a relation for the curvature,

€ h
7= " Sina [10]
and an equation for the angle « in the main approximation (if Ca is low).
do _ 0,22 (1]

dh h
Integrating the latter, we obtain the function x(4), see (Voinov 1976, 1977, 1978, 1988).

2.2. Approximate description of the interface in the vicinity of the tangent

Let us use B(h) to denote an interface inclination angle at an arbitrary point {h}, and a, at h = h,.
Introduce a Cartesian co-ordinate system {&, {} in which the { axis goes along the normal at the
point {# = h,} and the origin is at the solid surface (figure 1); for this system we have the following
transformation relations:

g0 —ay={/¢, r=+

The curve corresponding to the function f(4) may be rewritten in terms of {(£). Then from {10]
the following simplified equations can be derived:

d¥

€
Z=et [12]
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g—g=elnf ¢=e[éln‘f é+rn]- (13]

r]’ r

For it to be valid. |{| must be much less than ¢ sin «.
It £/ri—0 then [13] holds when

Eleln(sina) ™! = r,. [14]

From [13] and [14] it is clear that presenting the boundary as equation [12] is justified if the
condition from (Voinov 1976, 1978, 1988) is met:

|CalQ sin~' a« 1. (15]

The following formulas of an interface point vectorial angle 8 and components of the normal are
valid:
_ . 14 pob_d
O=a+{/l+, ng=1+"--, m=%- g
Boundary conditions stated for the interface may rather accurately be rewritten for 8 = « by
using (i) the first and second terms in the series expansion (in 6) of functions f{r, 8) present in the
boundary conditions

o [16]

@, 0) = f(r, oc)+g—j;(r, 0 — o)+ - -

and then (ii) the relation [16]. As a result, the kinematic conditions [1] at the interface will be of
the following form at the line {6 = a}:

(1 n
=@ g =g - - (%) £~ (%) ¢ (17

27 W7

The requirement for continuity of tangential stresses at the interface in [1] provides an additional

condition:
a (1) 6 El)
- o ={(%) - (ZE) |5 o=a s
2 1

A jump in normal stresses at the interface may be written by analogy with [17] and [18]. It is readily
seen that at r = r, we have

(Po)r = (P)2 = (pos(r, )i — (Pos(r, o)) + - - . [19]
By using: (i) continuity of p" at # = «; and (ii) equation (8], it is easy to demonstrate that [19]
is also true for the case r/r = 0.

2.3. Boundary-value problem for stream function

Substitute in [17] and [18] the expressions for #", py, and { as derived from [7] and [13]. This

poses conditions for functions ¥{*:

P

5’, = —ghl, §=u [20]
1 ou® 1 oy® r
PRI gL 142 21

1P 0 (1yP 1ow® 0 (1yP\|_gf, r n
”'[rz 06? -rar(r or a0 T T\ Tor Tr lnr1_1+7 - (22
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The constants g;, g;, and g, are determined using

gSi=g= e% [(¢* — sin® @)(« cos o — sin &) — p, (0> — sin’ a)(¢ cos ¢ —sin@)], @ =7 — a,

gi=c % sin o(} — pu)n, ge=c¢ %ul[sin2 o(l — pe)? — (@ + pya)isina  [23]
2sina ) s in
¢ =Ca=—p— e + pea) — (1 — py) sin‘al,

D = (o — cos a sin a)(¢p* — sin® @)+ u, (¢ — cos @ sin @)(a® — sin® o). [24]
Conditions at the solid become

2)

y? =0, QgT’=O for =0 [25]
(2)

@ -0 —ag; —0 for 0=n. [26]

According to [21], the radial velocity disturbance v is singular (1/r) at r = 0. However, no mass
sources/sinks are present in the close vicinity of that point (where r = 0). Therefore, [27] holds:

Yilr, ) = Yu(r1, 0),  Yalr, @) = Ylr, ). [27]

These mean that there are no mass flows within media 1 and 2 through the above arcs of the circle
(normal to both the interface and the solid surface.)

Additionally, it is required that singularity (for r = 0 and r = o0) of the function [V{/¥”| in the
second approximation be minimum. The “minimum singularity” is meant as follows: among the
possible solutions the one is chosen which provides |Vy/{”| whose growth in going to a singular point
is the slowest. From section 3 it is seen that this requirement is necessary for an asymptotic solution
to be unique.

2.4. Stream function and difference in normal stresses at interface

Biharmonic functions that satisfy [20]-[27] and the “‘minimum singularity in velocity™ principle
are to be found by using the following superposition of solutions to the biharmonic equation

Y = r(ln ri - 1)[(110 sin 0 + b,(0 cos 0 — sin 6)]
1
+ firi(sin 20 — 26)+I,r, cos 26,
Yy = r<1nr1 - 1) (@20, sin 0, + b:(6; cos 6, — sin 6,))
1

+ fori(sin 20, — 20,)+Lr cos 205, G.=m — 0. [28]

Here, a;, b, f; and [, are constants (j = 1, 2).

Singularities in |V} (as described by [28]) at points » = 0 and r = oo are minimum because they
correspond to singularities in boundary conditions [20] and [21]. The coefficients a; and &; are
defined by the system of equations:

aa sin a + by(x cos a — sina) = —g,
aesin@ + b (pcosp —sing) = —g, @¢=n-—a,
ai(sin o 4 o cos o) — byt sin & + a,(sin @ + ¢ cos @) —b,p sin ¢ = g,

wi(a, cos o — b, sin a) — w(a, cos ¢ — b, sin @) = 1 ga. 29]
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The coefficients f; and /; are defined by the system:
Si(cos 200 — 1)—1sin 2a + fr(cos 2¢ ~ 1)— L sin 2¢ = 4 g3,
— (i sin 2a + /; cos 20) + p(f> sin 2¢ + L cos 2¢) = § g,
Si(sin 20 — 2a)+li(cos 20 — 1) = ~g,
f(sin2¢ — 2¢0)+ h(cos 29 — 1) = —g, o=n—a. [30]

The curvature variation condition [2] poses a requirement on normal stresses at a distance from
the point & = hy. According to [1], [2], and [19], it is necessary that disturbance ( p@); to stresses
over the line {# = «} tends to zero when r => 0. Therefore, we should ensure that pressure p over
the line {6 = «} tends to zero in each of the liquids when r = c0. Pressure p should be written for
each of the stream functions in [28]; then corrections to the difference between normal stresses
(at r = ;) in the second approximation can be expressed:

4
(P&h — (PR). = ~ (w2 + wof2). 31]
Coefficients f; and f; are found from [30]:
Sln ¢4 g4
fi= A Z31:(2¢p cos 2¢p — sin 2¢)— (¢ cos ¢ — sin @)[(¢: — p1)g: cos 2a + 4 (cos 20 — 1)].
f= S‘;A &3 (200 cos 2o — sin 2a)+ (o cos a — sin a)[(1; — pi)g cos 2o + ‘%i‘ (cos 20 — 1)].

= (a0 cos o — sin &)(2¢ cos 2¢ ~ sin 2¢)u> + (¢ cos ¢ — sin @)(2a cos 2o — sin 2a)u;.  [32]
Substituting [32] into [31], taking into account [23] and [24], and performing cumbersome
transformation, we arrive at

(P) — (PR = — T ctga. 33]
1

2.5. Second-order asymptotic relation for boundary inclination angle

Substitution of [9] and [33] into [19] and then into the boundary condition for normal stresses
leads us to a differential equation
d°‘ =7 ‘(1 —cciga), e=e@) [34]

Taking into account that ¢|ctg a|« 1, rewrite [34].

<%+ctgcx)dcx=ihh-, € = 2CaQ, Ca"#—lv [35]

Integrating the latter generates the formula for the angle a:

do .
%Jm+Calns1na=Calnh,

sin af(@ + )’ — (1 — py )2 sin? «]
Q= (¢* — sin® @)(a — cos a sin a)+u*(a —sinfa)(@ —cospsng)? T * [36]

It is valid when Ca is low and h/h, is very large (but A <«h,). The expression [36] describes slow
angle variation with distance A if [15] is satisfied. The slow variation condition [15] may be violated
around points « = 0 and o = 180°.

In the case of zero viscosity of the medium 2 (u, = 0) the relation [36] correlates well with the
similar second-order equation in (Voinov 1978) for “liquid—gas™ interface and differs therefrom
in the expression for Q only. Note that article by Voinov (1976) contains the main approximation
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equation for ux = 0; generalizing it to the case of u, # 0 is an easy operation, see (Voinov 1988);
however, deriving the second approximation is far from being simple.

The second addend at the left-hand side of [36] represents a contribution of the second
approximation with respect to Ca. Unlike the first term (which is valid for any angle) the second
one can be utilized over a restricted set of angles, see section 3.

The formula [36] contains an arbitrary constant that has been found in (Voinov 1976) for the
main approximation. As for the second approximation, a determination method is outlined in
(Voinov 1995). Proceeding as in the latter paper, rewrite [36]:

* da sin a h
P = A
ZJ;,,, Q(a,u*)+ Caln e Caln

2, h

a, =9Ca)”? if o) <9Ca, o,=ua, if o) >9Ca. [37]

Here, o, is a static contact angle (a., = 0 in the case of perfect wetting) or a static wetting hysteresis
angle (Voinov 1976). The angle «, can also be determined with due account of nonequilibrium
physicochemical processes (see Blake & Haynes 1971 for example) if these are of importance; that
angle should not depend on energy dissipation due to viscosity in a liquid. The value A; must
generally be obtained by experiments; it can be much less than the limiting (minimum)
characteristic distance A, that restricts validity of the macroscopic flow model adopted (which
includes equations and boundary conditions). The main approximation and the experimental
results were compared in (Voinov 1976, 1978); it has been shown that A, may be as low as a
molecule size a, so there is every reason to write A, = Ka, where K is close to unity, see (Voinov
1995).

Other ways to establish the auxiliary parameter «,, in [37] are acceptable, provided that the order
of magnitude thereof is maintained; note that A;, depends on it. The difference in o, for relatively
low and high values of a, in [37] is due to In sin a tending to infinity when o = 0 (and o = =).
For high angles o (comparable with ) an equation symmetric with respect to [37] can be written.

The present version of dependence of «, on «,, and Ca is linked with the simplified relation valid
at p, =0, see (Voinov 1976):

o = a,3n+9Caln£.
fm

[38]
It is effective for angles « less than 150°.

Difference of a, from o, in [37] may only be essential if o<« 1. Using the expansion of Q(a, u,)
with respect to the low variable «, it can be shown that establishing the angle a, from [37] is justified
if the viscosity ratio is rather low: u, < 67/a,.

Equation [37] (or its counterpart for a, ~7m) may be employed to formulate external
hydrodynamics problems, proceeding by analogy with the asymptotic theory in (Voinov 1995). In
the external zone the interface can be nearly spherical, which simplifies treating the problem. The
corresponding surface shape equation is presented in (Voinov 1995). Note that the relation for F
in [34] of the latter reference should include a multiplier R* sin § (occasionally omitted).

3. VALIDITY DOMAIN OF ASYMPTOTIC RELATION FOR
DYNAMIC CONTACT ANGLE

The solution for the stream function [28] with coefficients from [29] and [30] is unique under
certain conditions. To establish these, consider a problem for [4] with homogeneous conditions.
At the solid surface the velocity components are zero:

0 5
6=0, y=0, %=O; 0=n, ¥=0, 7'/;—2=o. 139]

Over the line {# = a} the conditions [5] are valid.
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Consider a solution to the problem (4], [5], [39] in the following form:

¢i=rm+]fj"(0)’ .]= 132 [40]
Ji=a;cos(m + 1)6, + b; sin(m + 18, + ¢; cos(m — 1)9,
+dsin(m—1)0,, 6,=6, 6,=n—-6. [41]

This solution is similar to those of the problem formulated for the interior of a corner where use
is made of the biharmonic equation with homogeneous conditions over corner sides, see Rayleigh
(1920), Dean & Montagnon (1949), Moffatt (1964), Timoshenko & Goodier (1970).

Substitute [40] and [41] into [39] and [5]. This provides a homogeneous system of linear equations
for eight coefficients in [41]. The solvability condition for the latter (i.e. a determinant being zero)
leads us to the equation for the complex exponent m in [40]:

p(m sin 20 — sin 2ma)(m? sin® a, — sin?® ma,) + Ma2(m sin 20, — sin 2ma,)

X (m*sin’a —sin’ma) =0, a=o0, o=m—a. [42]

If a certain value m is a root of this equation then —m is also a root. Therefore it suffices to analyse
the case Re m > 0. Equation [42] has an unlimited set of roots at any py (s = /i) and a. Of
major interest are roots with minimum positive real parts; these guarantee the slowest growth of
V| when r = o0 (or when r = 0 if —m concerns). Hereafter, only such roots are dealt with.

At « = /2 the minimum Re m is provided by the (real) root m = 2 for any values of U

If a = 7, the root m tends to 1. Within a certain vicinity of the point a = n (with a radius of
the vicinity depending on u,) Re m is minimal for a real root. For the case of a tending to = the
root may be found analytically, by using two terms of Taylor series expansions with respect to o
at the point « = 7 for each function in [42] (i.e. sin 2«, sin 2ma, etc.). This operation offers the
derivative:

dm 2
T=—1-£) fora=n. [43]
do n 4u,
2.0
1.5
6 14
7 15
E 8 4 12 16
-4 5 1 9 13
2 10
3 11
1.0
0.5 | | |
0° 45° 90° 135° 180°
[+ 3

Figure 2. Minimum positive real part of exponent m: dependence on «. Curves 1-8: u, = oo, 30, 10, 4,
2, 1.25, 1, 0, respectively; curves 9-16: #, =0.0.033, 0.1, 0.25, 0.5, 0.8, 1, oo, respectively (inverse to the
former set).
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Table 1.
U 0 0.106 0.171 0.215 0.241 0.25
ot 128.7 140° 150° 160° 170° 180°

Thence it is clear that

(i) the function m(x) is equal to 1 at « = = and this value is its minimum for u, < 4.,

(ii) this value of the function is maximum for u, > 4u,; in this case min Re m < 1.

Note that m = 1 formally satisfies [42] in the general case (at any « and u,). However, one should
bear in mind that the root (m = 1) does only in particular situations (at certain values of o and
tx) have relevance to the original problem—and should be rejected in other situations.

Results of computation of the root of {42] with a minimum Re m are depicted in figure 2 for
various values of the angle o and viscosity ratio y,. The value «* at which m equals 1 grows with
Uy (from the minimum value, 128.7°, at u, = 0 to = at u, = 1/4). Similarly, for u, > 4 there exists
a (positive) point o~ at which m = 1.

In the important particular case with u, = 0 (the medium 2 is inviscid as is with gases) the
relation [42] breaks down into three equations, of which we should pay attention to one only:

m sin 2o = sin 2mo. [44]

The minimum positive value of Re m of a root of [44] decreases monotonically over the
interval(0, n). If u, is low (but non-zero), the function Re m(«) is not monotonic in a small-size
vicinity of the point « = &, see figure 2 and/or [43].

From the solution [28], the function [Vy®| varies at the singular points as follows:

VY@~ 1k, r=20 [45]
Py ~Inr, r— oo. [46]

For the solution y® to be unique it is sufficient that any solution y* to a problem with
homogeneous conditions ([4], [5], and [39]) ensures that the function |V} at the zero point and/or
at the infinitely remote point grows quicker than |Vy *|:

rlVy* = 0, r=20 47
[V *|(Inr)' = 0, r = c0. [48]

If conditions {47] or [48] are not met, then the solution is not unique since solutions of the
homogeneous problem can be added to a solution, thus producing new ones. If [47] and [48] are
met, then solutions of the homogeneous problem become eliminated due to the minimum
singularity principle (section 2.4).

It is readily seen that [48] is met if [47] is. The condition [47] requires Re m < — 1, therefore the
equation [42] roots with Re m > 0 must be such that

Re m > 1. [49]

The latter is met if o < o (uy) for gy < 1/4 and if & > o~ (u4) for p, > 4. Critical values of ot
and a~ are given in tables 1 and 2. If viscosity coefficients of the liquids differ by a factor of less
than four (1/4 < u, < 4), no restrictions are posed because [49] is met at any «. In the case of zero
viscosity of the liquid 2 (u, = 0) the critical angle a«* is 128.7°. Increasing the viscosity ratio p,
increases a*, and at u, = 1/4 the critical angle a* equals to =.

These conditions ensure uniqueness of the second-approximation solution. It may be demon-
strated that if the condition [49] is not satisfied, then the velocity field essentially depends on the

Table 2.
U 4 4.15 4.65 5.84 9.43 o
o 0 10° 20° 30° 40° 51.3°
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influence of a small vicinity of the point r = 0 (whose radius is r,, see [14]) where the boundary
notably differs from the tangent at 4 = A, and the asymptotic solution is not valid. If [49] is met,
a contribution of this small vicinity to the velocity field at r ~ r, is negligible.

4. CONCLUSION

The relation [36] for the tangent inclination angle describes the interface shape obtained from
a nonlinear hydrodynamic problem. When deriving [36], the velocity field is determined taking into
account a difference of the interface S); from its tangent in the vicinity of the fixed point where
this tangent is drawn. The relation [37] (or a similar relation for the case an ~ ) may be a basis
to formulate the external hydrodynamic problems (at a rather long distance from the contact line)
as in (Voinov 1995). The parameter A, that outlines the internal domain (h « k) may be governed
by various external flow conditions which could violate the assumptions underlying the asymptotic
relation [36]. These conditions could include a nonstationary interface, nonzero interface curvature,
and finite Reynolds number, etc.

The asymptotic second-order relation (valid at low capillary numbers) for the angle takes for
the first time into account the effect of the viscosity ratio. It should be noted that the contribution
of the second approximation to this relation coincides with a similar contribution in the case of
liquid-gas interface (when one of the viscosity coefficients is zero) as shown in (Voinov 1978). The
contribution of the second approximation to the asymptotic relation describing the interface is
much simpler than the contribution of the first approximation.

Of importance is the conclusion that the second-order asymptotic theory is generally valid not
for any value of the boundary inclination angle a. Unlike the first-order theory (that poses no
restrictions with respect to o if Ca is low) the second-order theory may turn out to be bad for low
or high angles. The range of validity (with respect to the angle) of the second-order asymptotic
theory depends on the viscosity ratio u,. The range widens when the difference in viscosity
coefficients diminishes. If u, € (1/4, 4), the second approximation is valid regardless of the angle.
If viscosity of the liquid 2 is zero (u, = 0), the second approximation is valid for angles of no more
than 128.7°.

According to the hydrodynamics theory, the dynamic contact angle exists over a limited range
of the wetting velocity v (Voinov 1976, 1978, 1988). There can exist critical values of velocity v
at which the angle is equal to 180° and 0. The second-approximation equation [37] may be used
to refine the angle at velocities close to the maximum (critical) wetting velocity (but not equal
thereto) if the viscosity coefficient of the second phase is rather high (u, > 0.25). In the case of
negative v a similar applicability condition (u, < 4) of the second-approximation theory is valid
for the entire possible negative v range.

This finer asymptotic theory for the interface dynamics may be useful in deriving reliable
quantitative estimate of the microprocess influence on the dynamic contact angle in wetting
dynamics experiments.
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