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Aima'act--Consideration is given to the nonlinear problem on a shape of  boundary between two viscous 
liquids, o f  which one displaces the other one from a solid surface, the Reynolds number being rather low. 
An asymptotic theory of  wetting dynamics is developed that is of  the second order with respect to small 
capillary numbers and valid for any ratio of  viscosity coefficients of  the media. A formula describing the 
dynamic contact angle (i.e. the inclination angle of  the tangent to the interface) as a function of  a distance 
to the solid is derived. Limitations on the angles for which the second-order theory is valid are shown. 
If the phase 2 viscosity is zero, the asymptotic second-order theory is valid for angles below 128.7 °. A 
theory applicability domain depends on the ratio of  viscosity coefficients. The applicability domain is not 
limited if the viscosity coefficients differ by a factor of less than four. Copyright © 1996 Elsevier Science 
Ltd. 
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1. I N T R O D U C T I O N  

Two-phase boundary dynamics near a contact line is generally described by a notably nonlinear 
hydrodynamics problem since the boundary shape must be determined simultaneously with velocity 
fields for the phases. 

Wetting hydrodynamics was considered in theoretical articles by Huh & Scriven (1971), Voinov 
(1976, 1977, 1978, 1988, 1995), Dussan (1979), Pismen & Nir (1982), Hervet & de Gennes (1984), 
de Gennes (1985), Cox (1986), Baiocchi & Pukhnachev (1990), Boender et al. (1991) and others. 

Assuming small capillary number the boundary shape is described by an asymptotic relation for 
the dynamic boundary angle (that is, the inclination angle of a tangent to the interface) that varies 
slowly with distance to the solid (Voinov 1976). In (Voinov 1978) a relation with the second order 
of accuracy with respect to the capillary constant has been proposed for the case of a "liquid-gas" 
interface. A method for evaluating the constant in the boundary inclination angle asymptotic 
equation of the second order was demonstrated in (Voinov 1995). 

Deriving a second-order asymptotic theory for the general case when viscosity coefficients of 
both liquids are not zero is obviously of interest. Within the second-order asymptotic theory the 
contribution of microprocesses near the contact line to the dynamic boundary angle may, in 
particular, be established at higher accuracy than the first-order theory provides. 

Consider a creeping flow of two liquids over a fiat solid surface. The boundary surface S~2 
between the liquids contacts the solid over a wetting line that moves at a velocity v along the normal 
to the wetting line (figure 1). A steady-state interface Sz: near the three-phase contact line is 
described by a two-dimensional problem for Stokes equations: 

- V p + / ~ A u = O ,  d i v u = O  

uj=-v, u2=0, x2=0; 

(unh = 0, (u)~ = (u)2, x~$12; 

(p~)l = (p,)2, p~, =p~,nk-p,n~, x~$12. 
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Figure l. Interface motion schematic, notanon. 

Xl 

[-~u~ ~uk 7 
pi~ = -p6 ,k  + #[~xk + -~xiJ'  p" = plan,n,.; 

d cos 
(p,)~ -- (p,)2 = q6 = dh a, xeSl> [1] 

Here, the subscript 1 or 2 at brackets denotes values for a medium 1 or 2, respectively; the 
repeating indices (i, k = 1, 2) are summation indices; x~ and x~ are Cartesian co-ordinates; ni is a 
component  of  the normal; a is the surface tension coefficient; q is the interface curvature; e is the 
inclination angle of  a tangent to the interface; h is the distance from an interface point to the solid. 
The dynamic viscosity coefficient p takes a value pj for a j t h  liquid (j = 1, 2). According to [1], the 
solid surface (x2 = 0) and the interface St_, are domains to impose kinematic boundary conditions, 
the tangential stress p, is continuous across S~2, and the normal stress p, undergoes a jump 
depending on capillary forces. 

Assume that Caj = #jv/a ( j  = 1, 2) is low (Caj--*O), Below, we use Ca = p lv /a  and assume that 
a viscosity ratio p ,  = #2//~ is finite. I f /~ ,  = ~ ,  the notation may easily be changed. 

The distance h between the moving interface and the solid dictates a local characteristic 
value of liquid velocity variation along the x: axis. A minimum distance h,, between the 
interface and the solid must be much greater than a molecule size a for us to deal with the 
problem. 

Symbolize with h0 a characteristic maximum distance from the boundary S~2 to the solid. 
Let each interface point {x2 = h} be related to a semicircle that is normal both to the interface 

at that point and the solid surface. An arc L~(h) of such circle is assumed to be in the phase 1, 
and L2(h), in the phase 2. The flow area under consideration corresponds to h within the interval 
(h,,, h0), and, in these terms, an arc L: appears in positions from a minor arc Lj(h,,) to a major arc 
Li(ho) ( j  = 1, 2). At limiting arcs Lj(h,,) and Lj(ho) the liquid velocity u components do not exceed 
the wetting velocity v, as to their order of  magnitude. 

It should also be assumed that the characteristic maximum (h0) and minimum (h,,) values of  the 
distance h from a point of  the interface to the solid differ very much: ln(ho/hm)>> 1. 

Of interest to us is a solution at a considerable distance from major arcs Lj(H0)--specifically, 
over a domain {h<<h0}. The velocity field far from a major semicircle does not depend on the 
velocities that could be specified for the semicircle (for a particular boundary shape). Similarly, 
a velocity u over minor arcs L,(hm) (over a minor semicircle) do not asymptotically affect the 
velocity field at a distance from these arcs {h>>h,,}, given an interface S,2 shape. This can be 
explained via the Saint-Venant principle for Stokes equations. When employing the Saint-Venant 
principle it suffices to take into account that the absolute value of the velocity u is on the order 
of  magnitude of the wetting velocity v, so detail of  the velocity field over the limiting arcs is of  
no importance. 
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The inequality ln(ho/h,,,)>>l enables adopting the following asymptotic boundary condition 
for the interface curvature q as a function of the distance to the solid, see (Voinov 1976, 
1978): 

d cos ct h 
q -  dh ~ 0 ,  ~ , ~ o v .  [2] 

This is necessary for determining the dynamic boundary angle relation. Assume that [2] is valid 
for {h << h0}. Asymptotic descriptions of  the dynamic boundary angle usually show a slow variation 
of  the angle ~ with the distance. 

The problem is to establish dependence of  the liquid interface inclination angle on the distance 
h in the second approximation with respect to a small capillary number Ca over an intermediate 
domain {h,,, << h << h0}. 

The asymptotic solution defines the boundary inclination angle a(h) correct to a constant whose 
determination requires an extra condition to be posed. One knows that the first-order theory admits 
an angle at the minimum distance as the extra condition: ct = ct,,, h = h,,. 

2. ASYMPT1OTIC SOLUTION TO THE INTERFACE DYNAMICS PROBLEM 

2.1. Successive approximations 

In the main approximation, see (Voinov 1976, 1978), the interface is locally close to its tangent 
at h = h,. The tangent inclination angle/~ is equal to a at h = h~, and a difference between these 
angles is only of  importance in two limiting cases: h = ~  and h=~0, if Ca is rather low. 

The stream function ~, will be sought using the {r, 0} polar co-ordinate system whose center is 
at the point where the tangent (from h = hi) intersects the solid. For  each medium the function 
¢ is sought in successive steps, by writing 

Cj = ¢ # " +  6 ) 2 ' +  . . .  [31 

where ~,jk~ ... vr~Ca k- ,, k = 1, 2 . . . .  For obtaining 6~ ~, the interface (to be determined) is defined 
by the equation 0 = ~, and the theory for ~bJ 2~ utilizes the small difference 0 - ct (0 - ~ # 0) derived 
from the first-order solution. The condition [1] for normal stresses should be satisfied by using 
successive approximations, and the condition at every approximation is a basis for the interface 
equation. 

At the first approximation the normal stress p, at h = h~ is obtained from the problem on flow 
with a rectilinear interface (Voinov 1976, 1978). The stream function Ip (hereafter the index (1) is 
allowed to be omitted) in each of  the two liquids satisfies the biharmonic equation 

V ' 6 = 0 ,  0 < r < o o ,  0 < 0 < T r ,  0 ~ c t ;  6 = ~ g ,  0 < c t ;  ~k=~O2, 0 > c t .  [4] 

Here, 0 = ~ is the interface over which the following conditions hold: 

0 = a ,  ~k, = 6 2 = 0 ,  ¢30 = a0 ' p' r: c~0 z r ~r Or,] .J= ~-' ? t~0 z r0rKr-~-r.]_l" [5] 

Similarly, over the solid surface: 

0 = 0 ,  ~ ' ~ = 0 ,  lt3~Ol ~ r ~0 - v ;  0 = n ,  ~b~2~=0, 1~3~,~ l~ r O0 - - v .  [6] 

Velocity components 

~4, "} 1 Oql"~ 
u~°'~=- Or ' u ~ ' } - r  c90 

should naturally be limited. One could demonstrate that this requirement is sufficient for the 
solution ¢)J~ to be unique over the domain [4]. 
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By a n a l o g y  wi th  T a y l o r  (1960),  M o f f a t t  (1964),  H u h  & Scr iven  (1971),  V o i n o v  (1976, 1988) the  
so lu t i ons  o f  the  b i h a r m o n i c  e q u a t i o n  t h a t  sa t i s fy  [5] a n d  [6] m a y  be wr i t t en  as fo l lows:  

q4 '~ = r[c~O sin 0 + d~(0 cos  0 - sin O)+v sin 0], 

~t~ I) = r[c202 sin 02 + d2(02 C O S  0 2  - -  sin O~_)+v sin 02], 02 = n - 0; 

c~ = v sin -~ c~[(/~l - p2)(sin 2 ~o - q~-~)-/~2nqqA -L, q~ = n - ~, 
c2 = v sin -~ ~[(/t~ - p~)(~2 _ sin-' c t ) - p , n c q A  ~, 

d~ = - v  sin ~[(p~ - p:)(q~2 _ sin 2 ~o)cos 7 + p j t ( s i n  q~ - tp cos  q~)]A -~, 

d~. = - v sin ct[(p2 - #,)(~2 _ sin 2 coco s ~o + p~n(sin ~ - ~ cos  ~)]A ~, 

A =/a~(~ - sin ~ cos  ~)(~02 - sin 2 ~0) +/a2(tp - sin ~o cos  q~)(~2 _ sin 2 ~). [7] 

S t resses  a t  h = h~ are  de r ived  wi th  due  a c c o u n t  o f  the  c o n d i t i o n  {poo =" 0 for  r =~ oo ove r  the  
l ine 0 = ~} t h a t  is a c o n s e q u e n c e  f r o m  [2]. W i t h  this  in m i n d ,  it s h o u l d  be  c o n c l u d e d  t ha t  p =~ 0 
w h e n  r ~ o0. In  this  case  we have  p re s su re s  in b o t h  med ia :  

p ~  - 2P--2 (c~ sin 0 + d~ cos  0), p~,~ = 2 / ~ 2  (c2 sin 0, + d2 cos  02). [8] 
- -  r r - 

M a k i n g  use o f  the  e x p r e s s i o n  

we f ind the s tress  j u m p  at  h = h,: 

poo= - - p - -  2P Or r ~3r ' 

(p'o~'), ( p,o~o,)2 ~ ~,,v -- = - E ,  E = Ca2Q(~),  C a -  
r f f  

sin ~, ,  , , 

Q = - ~  t t / ~ 0  +/&cQ- --  sin 2 ~(tt~ --  kt2)-), q~ = n --  c~. [9] 

F r o m  the c o n d i t i o n  [1] for  n o r m a l  s t resses  a n d  f r o m  [9], one  can  der ive  a r e l a t i o n  for  the  c u r v a t u r e ,  

E h 
= - ,  r =  [101 

q r sin 

a n d  an  e q u a t i o n  for  the ang le  ~ in the  m a i n  a p p r o x i m a t i o n  ( if  Ca is low).  

d~  = Ca 2Q 
dh h 

I n t e g r a t i n g  the la t te r ,  we o b t a i n  the  func t ion  ~(h),  see ( V o i n o v  1976, 1977, 1978, 1988). 

Ill] 

t g ( 0 - ~ ) = ~ / ~ ,  r 2 = ~ 2 + ~ 2  

The  curve  c o r r e s p o n d i n g  to  the  func t ion  fl(h) m a y  be r ewr i t t en  in t e r m s  o f  ¢(¢).  T h e n  f r o m  [10] 
the  f o l l o w i n g  s impl i f ied  e q u a t i o n s  can  be de r ived :  

d:~ E 
d~ 2 - ~ + ' . '  [121 

2.2. Approx imate  description o f  the interface in the vicinity o f  the tangent 

Let  us  use /~(h)  to  d e n o t e  an  in te r face  i nc l i na t i on  angle  a t  an  a r b i t r a r y  p o i n t  {h}, a n d  ~, a t  h = &. 
I n t r o d u c e  a C a r t e s i a n  c o - o r d i n a t e  sys t em {~, ~} in which  the ~ axis  goes  a l o n g  the n o r m a l  a t  the  
p o i n t  {h = h~} a n d  the o r ig in  is a t  the  so l id  sur face  (f igure 1); for  this  sys tem we have  the fo l l owing  
t r a n s f o r m a t i o n  re la t ions :  
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d~ ~ [ I n  - ~ -  ] [13] d~ - E l n - ' r l  ~ = E  # r~ # + r l  . 

For it to be valid. I~1 must be much less than ~ sin ~. 
It ¢/r~--*O then [13] holds when 

# >>lElr,(sin ~)-J = r . .  [14] 

From [13] and [14] it is clear that presenting the boundary as equation [12] is justified if the 
condition from (Voinov 1976, 1978, 1988) is met: 

]CalQ sin -~ ~<< 1. [15] 

The following formulas of  an interface point vectorial angle 0 and components of  the normal are 
valid: 

d~ [16] 0 = ~ + ~ / # + . . . ,  no= 1 + . " ,  n , = # - ~ - - ~ + ' - . .  

Boundary conditions stated for the interface may rather accurately be rewritten for 0 = ~ by 
using (i) the first and second terms in the series expansion (in 0) of  functionsf(r,  0) present in the 
boundary conditions 

f (r ,  O) = f i r ,  ~ ) + ~  (r, a)(O - ~ ) + "  " 

and then (ii) the relation [16]. As a result, the kinematic conditions [1] at the interface will be of  
the following form at the line {0 = ~}: 

u,,d~" u~d~ \--~-O-.]2{c~u~')'~ r ~ \--~-0- ], (8u~')'~ r"  ~ [171 ( u o ) ,  = (uo)  = ( u ) ,  - ( u , ) 2  = - 

The requirement for continuity of  tangential stresses at the interface in [1] provides an additional 
condition: 

e r o ,  ( P ~ 9 2  = - -  - [ 1 8 ]  (k oL \aoj, jr '  

A jump in normal stresses at the interface may be written by analogy with [17] and [18]. It is readily 
seen that at r = r~ we have 

(p,)~ - (p,)2 = (podr, ~))~ - (poo(r, ~))2 + ' "  '. [19] 

By using: (i) continuity ofp~ ~ at 0 = ~; and (ii) equation [8], it is easy to demonstrate that [19] 
is also true for the case r/rt ~ oo. 

2.3. Boundary-value problem for stream function 

Substitute in [17] and [18] the expressions for u~ ~), p~), and ( as derived from [7] and [13]. This 
poses conditions for functions #j~2): 

&~O)2) - g j  In r 0 = ~ [20] 
~ r  ~'~ r l  ' 

10tp~ 2' l a~b(22' ( r ~ )  
r O0 r dO --g3 In - - - -  1 + [21] r l  

#' r ~ 002 r~rkr--~-)_J--B2Lr2 002 Or\r  Or ] J = r  l n r ~ - - l + - -  " [22] 
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The cons tan t s  &, g~, and  g4 are de te rmined  using 

v 
g, = g2 = ~ [(~o 2 -- sin 2 q~)(~ cos ~ --  sin ~ ) _ # , ( a 2  _ sin: a)(~o cos ~o --  sin ~o)1, ~o = rt -- ~, 

2v 2v , .  2 
g3 = e - ~  sin 3 ~(1 - # , ) r t ,  g~ = e ~ / ~ l s m  ~(1 - /** )2  _ (~0 + #,~)~]sin ~ [23] 

2 s i n ~  
= t~a - - - i f - - -  [(q~ + ~,~)2 _ (1 - #,)2 sin 2 ~1, 

D = (a - cos c~ sin a)(~o 2 - sin 2 ~o)+#, ( rp  - cos ¢p sin q~)(a 2 - sin ~ a). [24] 
Cond i t ions  at  the solid become 

~I 2~=0,  8r = 0  for 0 = 0  [25] 

~22 '=0 ,  ~,/,~2~,~ = 0 for 0 = f t .  [26] 
Or 

Acco rd ing  to [21], the radia l  veloci ty d i s tu rbance  v~ 2~ is s ingular  ( I / r )  at  r = 0. However ,  no mass  
sources /s inks  are present  in the close vicinity o f  tha t  po in t  (where r ==> 0). Therefore ,  [27] holds:  

~O,(r,, a)  = ~1(rl, 0), ~2(rl, ~) = qJffrl, n), [271 

These mean  tha t  there  are no mass  flows within med ia  1 and 2 th rough  the above  arcs o f  the circle 
(normal  to bo th  the interface and  the solid surface.) 

Add i t iona l ly ,  it is required tha t  s ingular i ty  (for r ~ 0 and  r =~ c~) o f  the funct ion IV~O~2q in the 
second a p p r o x i m a t i o n  be min imum.  The " m i n i m u m  s ingular i ty"  is mean t  as follows: a m o n g  the 
poss ible  solu t ions  the one is chosen which provides  IVO~2~ I whose g rowth  in going to a s ingular  po in t  
is the slowest.  F r o m  section 3 it is seen that  this requi rement  is necessary for an asympto t i c  so lu t ion  
to be unique.  

2.4. Stream function and difference in normal stresses at interface 

Biharmonic  funct ions tha t  satisfy [20]-[27] and the " m i n i m u m  singular i ty  in veloci ty"  principle 
are to be found  by using the fol lowing superpos i t ion  of  solut ions  to the b iha rmon ic  equa t ion  

ff~2~= r (  l n r - r ~  1)[a,0 s i n 0 +  bl(O c o s 0 - - s i n  0)] 

+sqr l ( s in  20 - 20)+llr~ cos 20, 

+J~r l (s in  202 - 202)+12rt cos 202, 02 = rc - 0. [28] 

Here ,  aj, bj, f and  l i are  cons tan ts  ( j  = 1, 2). 
Singular i t ies  in IV~2~ I (as descr ibed by  [28]) at  po in ts  r = 0 and  r = oo are  m i n i m u m  because they 

co r r e spond  to s ingulari t ies  in b o u n d a r y  condi t ions  [20] and  [21]. The  coefficients aj and  bj are 
defined by  the system of  equat ions :  

al~ sin ~ + bl(~ cos ~ - sin ~) = - g l ,  

a2q~ sin q~ + b2(q~ cos q~ - sin ~0) = - & ,  q~ = rt - ~, 

a~(sin ~ + ~ cos ~ ) - b l ~  sin ~ + affsin q~ + q~ cos q~)-b2~o sin q~ = g3, 

/&(at cos ~ - bt sin ~ ) - # 2 ( a :  cos ¢p - b2 sin ~#) = ½g4. [29] 
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The coefficients ~ a n d / j  are defined by the system: 

J~(cos 2at - 1 ) - l l s i n  2~ + j~(cos 2~o - 1 ) - /2  sin 2(p = ½g3, 

-~t~(fi sin 2ct + l~ cos 2~)+/~2(~ sin 2tp + /2  cos 2~0) = ¼g4, 

J~(sin 2~ - 2~t) + It(cos 20t - 1) = - g l ,  

)~(sin 2~0 - 2~o)+12(cos 2~ - 1) = - g l ,  tp = n - ~t. [30] 

The curvature  variat ion condit ion [2] poses a requirement on normal  stresses at a distance f rom 
the point  h = hi. Accord ing  to [1], [2], and [19], it is necessary that  disturbance (p~))j to stresses 
over the line {0 = ~} tends to zero when r =~ oo. Therefore, we should ensure that  pressure p over 
the line {0 = ~} tends to zero in each o f  the liquids when r =~ oo. Pressure p should be written for  
each o f  the stream functions in [28]; then corrections to the difference between normal  stresses 
(at r = r~) in the second approximat ion  can be expressed: 

4 
(p~) ]  - (p(0~))~ = - ~  ( p ~  + p ~ ) .  [31] 

Coefficients jq and J~ are found f rom [30]: 

sin ~ .~ 
f~ = - ~ .  g3/~:tz~o cos 2(p - sin 2~o)-  (~o cos (p - sin ~o)[(p2 - p~)g] cos 2~t + ~ (cos 2~ - 1)]. 

sin ct 
J~ = ~--~-, g3p~(2~ cos 2ct - sin 2 ~ ) +  (~t cos ~ - sin ~t)[(p2 - #])gt cos 2~t + ~ (cos 2~t - 1)]. 

A .  = (~ cos c( - sin ~)(2~0 cos 2~o - sin 2~0)p2 + (~o cos ~o - sin ~o)(2~t cos 2ct - sin 2~t)#~. [32] 

taking into account  [23] and [24], and performing cumbersome Substituting [32] into [31], 
t ransformat ion,  we arrive at 

(p(0~l)~ _ (p(0~))2 = _ t r  E2 ctg at. [33] 
F] 

2.5. Second-order asymptotic relation for boundary inclination angle 

Substi tution o f  [9] and [33] into [19] and then into the boundary  condit ion for normal  stresses 
leads us to a differential equat ion 

dee E 
= ~ (1 - E ctg ct), E = E(0t). [34] 

Taking into account  that Elctg ~tl<< 1, rewrite [34]. 

+ c t g e  d e = - ~ ,  E = 2 C a Q ,  Ca=P'va " [351 

Integrat ing the latter generates the formula  for the angle e: 

½ .Q(e, p,----~ + Ca In sin ~ = Ca In h, 

sin e[(q) + p,~)2 _ (1 - ~,)2 sin 2 el 
Q = (q~2 _ sin 2 q~)(e _ cos • sin e ) + ~ , ( e 2  _ sin 2 e)(~0 - cos ~o sin q)) ,~o = ~ - e. [36] 

It is valid when Ca is low and h/hm is very large (but h<<h0). The expression [36] describes slow 
angle variat ion with distance h if [15] is satisfied. The slow variat ion condi t ion [15] may  be violated 
a round  points e = 0 and • = 180 °. 

In the case o f  zero viscosity o f  the medium 2 (p ,  = 0) the relation [36] correlates well with the 
similar second-order  equat ion in (Voinov 1978) for " l iqu id-gas"  interface and differs therefrom 
in the expression for Q only. Note  that article by Voinov (1976) contains the main approximat ion  
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equation for/~,  = 0; generalizing it to the case of/~,  ¢: 0 is an easy operation, see (Voinov 1988); 
however, deriving the second approximation is far from being simple. 

The second addend at the left-hand side of [36] represents a contribution of the second 
approximation with respect to Ca. Unlike the first term (which is valid for any angle) the second 
one can be utilized over a restricted set of angles, see section 3. 

The formula [36] contains an arbitrary constant that has been found in (Voinov 1976) for the 
main approximation. As for the second approximation, a determination method is outlined in 
(Voinov 1995). Proceeding as in the latter paper, rewrite [36]: 

f f  da sin a h 
½ m Q(a,  I~,~ + Ca In sin a ,  - Ca In ~-,h~ 

a , = ( 9 C a )  ~'3 if a3m<~9Ca, a,=Ctm if a 3>/9Ca.  [37] 

Here, am is a static contact angle (am = 0 in the case of perfect wetting) or a static wetting hysteresis 
angle (Voinov 1976). The angle am can also be determined with due account of nonequilibrium 
physicochemical processes (see Blake & Haynes 1971 for example) if these are of importance; that 
angle should not depend on energy dissipation due to viscosity in a liquid. The value h~, must 
generally be obtained by experiments; it can be much less than the limiting (minimum) 
characteristic distance hm that restricts validity of the macroscopic flow model adopted (which 
includes equations and boundary conditions). The main approximation and the experimental 
results were compared in (Voinov 1976, 1978); it has been shown that hL may be as low as a 
molecule size a, so there is every reason to write hm = Ka,  where K is close to unity, see (Voinov 
1995). 

Other ways to establish the auxiliary parameter a ,  in [37] are acceptable, provided that the order 
of magnitude thereof is maintained; note that hm depends on it. The difference in a ,  for relatively 
low and high values of am in [37] is due to In sin a tending to infinity when a => 0 (and a =:- rt). 
For high angles a (comparable with re) an equation symmetric with respect to [37] can be written. 

The present version of dependence of a ,  on am and Ca is linked with the simplified relation valid 
a t /~ ,  = 0, see (Voinov 1976): 

h 
a 3 = a 3 + 9Ca  lnh-~. [38] 

It is effective for angles a less than 150 °. 
Difference of a ,  from am in [37] may only be essential if am<< 1. Using the expansion of Q(a, # , )  

with respect to the low variable a, it can be shown that establishing the angle a ,  from [37] is justified 
if the viscosity ratio is rather low: p ,  < 6zr/a3rn. 

Equation [37] (or its counterpart for am ~'  7[) may be employed to formulate external 
hydrodynamics problems, proceeding by analogy with the asymptotic theory in (Voinov 1995). In 
the external zone the interface can be nearly spherical, which simplifies treating the problem. The 
corresponding surface shape equation is presented in (Voinov 1995). Note that the relation for F 
in [34] of the latter reference should include a multiplier R 2 sin 0 (occasionally omitted). 

3. V A L I D I T Y  D O M A I N  OF A S Y M P T O T I C  R E L A T I O N  F O R  
D Y N A M I C  C O N T A C T  A N G L E  

The solution for the stream function [28] with coefficients from [29] and [30] is unique under 
certain conditions. To establish these, consider a problem for [4] with homogeneous conditions. 
At the solid surface the velocity components are zero: 

0 = 0 ,  ~ , ,=0 ,  -~--ff=0; 0=z r ,  ~ 2 = 0 ,  = 0 .  [39] 

Over the line {0 = a} the conditions [5] are valid. 
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Consider  a solut ion to the p rob lem [4], [5], [39] in the following form: 

~Oj = r "+ ~(0) ,  j = 1, 2 [40] 

f = aj cos(m + 1)0j + bj sin(rn + 1)0 i + cj cos(rn - 1)0i 

+ ~ s i n ( m - 1 ) 0 1 ,  0 , = 0 ,  0 2 = 7 r - 0 .  [41] 

This solut ion is similar to those o f  the p rob lem formula ted  for  the interior o f  a corner  where use 
is made  o f  the b iharmonic  equat ion  with homogeneous  condit ions over  corner  sides, see Rayleigh 
(1920), Dean  & M o n t a g n o n  (1949), Mof fa t t  (1964), T imoshenko  & Good ie r  (1970). 

Substi tute [40] and  [41] into [39] and [5]. This provides a homogeneous  system o f  linear equat ions  
for  eight coefficients in [41]. The  solvabili ty condi t ion for  the lat ter  (i.e. a de te rminan t  being zero) 
leads us to the equa t ion  for  the complex  exponent  m in [40]: 

/~(rn sin 2~ - sin 2m~)(m 2 sin 2 ~2 - sin z ma2) + p2(rn sin 2a2 - sin 2ma2) 

× (m 2 sin 2 ~ -- sin 2 ms )  = 0, • = ~q, ctz = ~ -- 0t. [42] 

I f  a certain value m is a roo t  o f  this equat ion  then - m is also a root .  Therefore  it suffices to analyse 
the case Re m > 0. Equa t ion  [42] has an unlimited set o f  roots  at  any  kt, (/~, =/~2/#~) and  ~. O f  
ma jo r  interest are roots  with m i n i m u m  positive real parts;  these guarantee  the slowest growth  o f  
IV~[ when r ~ ~ (or when r ~ 0 if  - m  concerns).  Hereaf ter ,  only such roots  are dealt  with. 

At  ~ = ~/2 the m i n i m u m  Re m is provided by the (real) root  m = 2 for  any  values o f / ~ , .  
I f  ct =~ ~, the roo t  m tends to 1. Within a certain vicinity o f  the point  ct = n (with a radius o f  

the vicinity depending o n / ~ , )  Re m is minimal  for  a real root.  Fo r  the case o f  ct tending to rc the 
roo t  m a y  be found  analytically,  by using two terms o f  Tay lo r  series expansions with respect to 
at  the poin t  ~ = 7t for  each funct ion in [42] (i.e. sin 2~, sin 2m~, etc.). This opera t ion  offers the 
derivative: 

d ~ - -  1 -  f o r ~ = ~ .  [43] 

q 

v ,4a - yO u 135 ° 180 ° 

F igure  2. M i n i m u m  posi t ive  real  pa r t  o f  exponen t  m: dependence  on  ~. Curves  1 -8 : /~ ,  = oo, 30, 10, 4, 
2, 1.25, 1, 0, respectively;  curves  9 - 1 6 : / ~ ,  = 0. 0.033, 0.1, 0.25, 0.5, 0.8, 1, o% respect ively ( inverse to the 

fo rmer  set). 
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T a b l e  1. 

/ t ,  0 0 .106 0.171 0 .215 0.241 0.25 

~* 128.7 140" 150 ° 160 ° 170 ° 180 ° 

Thence it is clear that  
(i) the funct ion m(~) is equal  to 1 at ~ = rt and this value is its m in imum for #1 < 4#2, 
(ii) this value of  the funct ion is m a x i m u m  for  #~ > 4#2; in this case min  Re m < 1. 
No te  tha t  m = 1 formal ly  satisfies [42] in the general case (at any ~ and # , ) .  However ,  one should 

bear  in mind  that  the roo t  (m = 1) does only in par t icular  si tuations (at certain values of  ~ and 
# , )  have relevance to the original p r o b l e m - - a n d  should be rejected in other  situations. 

Results o f  compu ta t i on  o f  the root  o f  [42] with a m in imum Re rn are depicted in figure 2 for 
var ious values of  the angle c¢ and viscosity ratio # , .  The  value ~+ at  which m equals 1 grows with 
# ,  ( f rom the m i n i m u m  value, 128.7 °, at  # ,  = 0 to rc at # ,  = 1/4). Similarly, for # ,  > 4 there exists 
a (positive) poin t  7-  at which m = 1. 

In the impor t an t  par t icular  case with # ,  = 0 (the med ium 2 is inviscid as is with gases) the 
relation [42] breaks  down into three equat ions,  o f  which we should pay  a t tent ion to one only: 

m sin 2~ = sin 2m~. [44] 

The m i n i m u m  positive value o f  Re m of  a root  o f  [44] decreases monotonica l ly  over  the 
interval(0, n). I f  # ,  is low (but non-zero),  the function Re m(~) is not  mono ton ic  in a small-size 
vicinity of  the point  ~ = n, see figure 2 and /or  [43]. 

F r o m  the solut ion [28], the funct ion IVy{2} I varies at the singular points  as follows: 

IV~p(2'l ~ 1/r ,  r ~ 0 [45] 

I V~(2) I --~ In r, r ~ ~ .  [46] 

Fo r  the solution if{2) to be unique it is sufficient that  any solution if* to a p rob lem with 
homogeneous  condit ions ([4], [5], and [39]) ensures that  the function IVC2}I at the zero point  and/or  
at the infinitely remote  point  grows quicker  than IVff*[: 

rlV~*l => oo, r ~ 0 [47] 

IVff*l(ln r ) - ' ~  oo, r ~ oo. [48] 

I f  condit ions [47] or  [48] are not  met ,  then the solution is not  unique since solutions of  the 
homogeneous  p rob lem can be added to a solution, thus producing  new ones. I f  [47] and [48] are 
met,  then solutions of  the homogeneous  p rob lem become el iminated due to the min imum 
singularity principle (section 2.4). 

It  is readily seen that  [48] is met  if [47] is. The  condi t ion [47] requires Re m < - 1, therefore the 
equat ion  [42] roots  with Re m > 0 must  be such that  

Re m > 1. [49] 

The  lat ter  is met  if  ~ < ~+ ( # , )  for  # ,  < 1/4 and if ~ > ~ ( # , )  for  # ,  > 4. Critical values of  ~+ 
and ~- are given in tables 1 and 2. I f  viscosity coefficients o f  the liquids differ by a factor  o f  less 
than  four  (1/4 < / z ,  < 4), no restrictions are posed because [49] is met  at  any  ~. In  the case o f  zero 
viscosity of  the liquid 2 ( # ,  = 0) the critical angle ~+ is 128.7 °. Increasing the viscosity ratio # ,  
increases ~+, and at  # ,  = 1/4 the critical angle c{ + equals to rr. 

These  condi t ions ensure uniqueness o f  the second-approx imat ion  solution. I t  may  be demon-  
s t rated that  if  the condi t ion [49] is not  satisfied, then the velocity field essentially depends on the 

T a b l e  2. 

# ,  4 4.15 4.65 5.84 9.43 

- 0 10 ° 20 ° 30 ° 40 ° 51.3 ° 
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influence of a small vicinity of the point r = 0 (whose radius is r , ,  see [14]) where the boundary 
notably differs from the tangent at h = h~ and the asymptotic solution is not valid. If [49] is met, 
a contribution of this small vicinity to the velocity field at r - r~ is negligible. 

4. CONCLUSION 

The relation [36] for the tangent inclination angle describes the interface shape obtained from 
a nonlinear hydrodynamic problem. When deriving [36], the velocity field is determined taking into 
account a difference of the interface S~2 from its tangent in the vicinity of the fixed point where 
this tangent is drawn. The relation [37] (or a similar relation for the case ctm ~ n) may be a basis 
to formulate the external hydrodynamic problems (at a rather long distance from the contact line) 
as in (Voinov 1995). The parameter h0 that outlines the internal domain (h <<h0) may be governed 
by various external flow conditions which could violate the assumptions underlying the asymptotic 
relation [36]. These conditions could include a nonstationary interface, nonzero interface curvature, 
and finite Reynolds number, etc. 

The asymptotic second-order relation (valid at low capillary numbers) for the angle takes for 
the first time into account the effect of the viscosity ratio. It should be noted that the contribution 
of the second approximation to this relation coincides with a similar contribution in the case of 
liquid-gas interface (when one of the viscosity coefficients is zero) as shown in (Voinov 1978). The 
contribution of the second approximation to the asymptotic relation describing the interface is 
much simpler than the contribution of the first approximation. 

Of importance is the conclusion that the second-order asymptotic theory is generally valid not 
for any value of the boundary inclination angle ct. Unlike the first-order theory (that poses no 
restrictions with respect to ~ if Ca is low) the second-order theory may turn out to be bad for low 
or high angles. The range of validity (with respect to the angle) of the second-order asymptotic 
theory depends on the viscosity ratio p, .  The range widens when the difference in viscosity 
coefficients diminishes. If/~, e (1/4, 4), the second approximation is valid regardless of the angle. 
If viscosity of the liquid 2 is zero (#, = 0), the second approximation is valid for angles of no more 
than 128.7 ° . 

According to the hydrodynamics theory, the dynamic contact angle exists over a limited range 
of the wetting velocity v (Voinov 1976, 1978, 1988). There can exist critical values of velocity v 
at which the angle is equal to 180 ° and 0. The second-approximation equation [37] may be used 
to refine the angle at velocities close to the maximum (critical) wetting velocity (but not equal 
thereto) if the viscosity coefficient of the second phase is rather high (/~, > 0.25). In the case of 
negative v a similar applicability condition (/~, < 4) of the second-approximation theory is valid 
for the entire possible negative v range. 

This finer asymptotic theory for the interface dynamics may be useful in deriving reliable 
quantitative estimate of the microprocess influence on the dynamic contact angle in wetting 
dynamics experiments. 
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